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FUNDAMENTAL SOLUTIONS IN PROBLEMS OF BENDING

OF ANISOTROPIC PLATES

UDC 539.3V. N. Maksimenko and E. G. Podruzhin

Fundamental solutions based on the engineering theory of bending of thin anisotropic plates (Kirchhoff–
Love hypotheses) are constructed for anisotropic, in particular, orthotropic plates of canonical plan
form (half-plane, quadrant, band, half-band, rectangle, and unbounded plate with an elliptic hole).
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Fundamental solutions (solutions for point loads and dislocations) play an important role in solving problems
of elastic extension and bending of anisotropic plates. The fundamental solutions given, solutions of the problem
of plates subjected to loads distributed along lines or sites (regions) can be constructed by integration. In the case
of bending of anisotropic plates with stress concentrators such as cuts, holes, and cracks, the knowledge of the
fundamental solutions allows one to write potential representations at the stress-concentrator contour in the form of
the Cauchy-type integrals and solve the boundary-value problem by a numerical method. Moreover, some boundary
conditions at the plate contour can be satisfied automatically, which facilitates the numerical implementation. The
solutions given below are compared with the known solutions for isotropic plates [1].

1. Let a homogeneous plate made of a material with rectilinear anisotropy (not necessarily orthotropy)
occupy the domain D = {|x| < ∞, |y| < ∞}. At the point τ with the coordinates x = ξ and y = η, the following
point loads are applied: the point transverse force Pz and the point bending moments Mx and My. According
to the classical theory of bending of thin anisotropic plates [2], the Lekhnitskii elastic complex potentials can be
written as

Φν(zν) = E1
ν(zν , τ) +M1

ν (zν , τ), E1
ν(zν , τ) = Aν ln (zν − τν), M1

ν (zν , τ) = Bν/(zν − τν),

zν = Re z + µν Im z, τν = ξ + µνη (ν = 1, 2); (1)

ϕν(zν) = Aν [ln (zν − τν)− 1](zν − τν) +Bν ln (zν − τν) +Dν ,

Fν(zν) = Aν(zν − τν)2[ln (zν − τν)− 3/2]/2 +Bν(zν − τν)[ln (zν − τν)− 1] +Dνzν +Gν ,

F ′′ν (zν) = Φν(zν), ϕ′ν(zν) = Φν(zν) (ν = 1, 2).

Here, the term E1
ν(zν , τ) corresponds to the point force Pz and the term M1

ν (zν , τ) to the point bending moment
with the components Mx and My. The terms Dνzν +Gν in the expression for Fν(zν) determine the displacement
of the plate as a rigid body; Aν and Bν are unknown complex constants.

The functions ϕν(zν) and Fν(zν) are multivalued functions. Since these functions are expressed in terms
of the multivalued function ln (zν − τν), they acquire the following increments upon circulating along an arbitrary
loop L around the point τ = ξ + iη:

{ϕν(zν)}L = 2πi[Aν(zν − τν) +Bν ], {Φν(zν)} = 2πiAν ,

{Fν(zν)}L = 2πi[Aν(zν − τν)2/2 +Bν(zν − τν)], ν = 1, 2.
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The equations for determining Aν and Bν follow from the condition of single-valuedness of tangential dis-
placements and deflections of the plate (u + iv, w) and from the equation of equilibrium of the part of the plate
bounded by the contour L:

2∑
ν=1

(µk−2
ν Aν − µ̄k−2

ν Āν) = fk (k = 1, 4), f1 =
Pz

2πiD11
, fj = 0 (j = 2, 4),

(2)

2∑
ν=1

(µk−2
ν Bν − µ̄k−2

ν B̄ν) = dk (k = 1, 4), d1 =
My

2πiD11
, d4 =

Mx

2πiD22
, d3 = d2 = 0.

Here D11 and D22 are the flexural rigidities of the plate in the x and y directions, respectively.
We denote the angle between the principal direction of orthotropy E1 and the x axis by ϕ. For an orthotropic

material, we obtain µ1,2 = ±α+ iβ for ϕ = 0. In this case, we have ImA1 = − ImA2 and Aν is given by the simple
expression

A1,2 = |µ1|2Pz(α∓ iβ)/(16παβD11).

2. We consider an anisotropic half-plane D = {x > 0, |y| < ∞} clamped along the line x = 0. Let a point
force Pz be applied to the point with the coordinates x = ξ and y = η. Using the analogy between the plane
problem and the problem of plate bending [3], we write the complex potentials

Φν(zν) = E2
ν(zν , τ) = Aν ln

zν − τν
µν

+ Ā1lνsν ln
sνzν − τ̄1

µ̄1
+ Ā2nνmν ln

mνzν − τ̄2

µ̄2
,

lν =
µ3−ν − µ̄1

µν − µ3−ν
, sν =

µ̄1

µν
, nν =

µ3−ν − µ̄2

µν − µ3−ν
, mν =

µ̄2

µν
, ν = 1, 2.

(3)

With accuracy to a complex constant, the first term in (3) is the solution of the problem of an infinite plate
loaded by a point force. The second and third terms are functions regular in the domain considered and satisfy the
clamped boundary conditions (w = wx = 0) along the line x = 0 if the complex constants lν and nν are chosen
properly (a somewhat different form of the solution for an anisotropic clamped half-plane is given in [4]).

For the free edge of the half-plane x = 0, the boundary condition yields a system of equations for the
constants lν and nν

l1p1s1 + l2p2s2 = −p̄1, l1s
2
1q1µ

2
1 + l2s

2
2q2µ

2
2 = −q̄2

1µ̄
2
1,

n1p1m1 + n2p2m2 = −p̄2, n1m
2
1q1µ

2
1 + n2m

2
2q2µ

2
2 = −q̄2

2µ̄
2
2,

which implies that

lν =
qλp̄1/µ̄1 − q̄1pλ/µλ
qνpλ/µλ − qλpν/µν

, nν =
qλp̄2/µ̄2 − q̄2pλ/µλ
qνpλ/µλ − qλpν/µν

, λ = 3− ν. (4)

For the simply supported edge (x = 0) of the half-plane, the boundary condition yields

l1p1s1 + l2p2s2 = −p̄1, l1s
−1
1 + l2s

−1
2 = −1,

n1p1m1 + n2p2m2 = −p̄2, n1m
−1
1 + n2m

−1
2 = −1,

and accordingly,

lν =
µ̄1pλ/µλ − µλp̄1/µ̄1

µλpν/µν − µνpλ/µλ
, nν =

µ̄2pλ/µλ − µλp̄2/µ̄2

µλpν/µν − µνpλ/µλ
.

We consider an orthotropic (ϕ = 0) half-plane D = {x > 0, |y| <∞} with the simply supported edge x = 0.
Let two equal but opposite point forces be applied to the infinite plate symmetrically about the y axis. Using the
superposition principle, we obtain the complex potentials for a simply supported half-plane bent by a point force

Φν(zν) = E3
ν(zν , τ) = E1

ν(zν , τ)− E1
ν(zν ,−τ̄) = Aν ln ((zν − τν)/(zν + τ∗ν )),

τ∗ν = ξ − µνη, ν = 1, 2.

This formula can be derived from (3) by changing the elastic parameters with allowance for material orthotropy.
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3. We consider a quadrant (the first quarter of the complex plane) and set ϕ = 0. Let the semi-infinite
orthotropic plate with a simply supported edge be loaded by oppositely directed point forces symmetrically about
the x axis. In this case, we obtain the solution for a point force applied to an internal point of the quadrant simply
supported along the sides x = 0 and y = 0:

Φν(zν) = E4
ν(zν , τ) = E1

ν(zν , τ) + E1
ν(zν ,−τ)− E1

ν(zν , τ̄)− E1
ν(zν ,−τ̄),

Φν(zν) = Aν ln
(zν − τν)(zν + τν)
(zν + τ∗ν )(zν − τ∗ν )

, τ∗ν = ξ − µνη, ν = 1, 2.

We consider an orthotropic half-plane D = {x > 0, |y| <∞}, ϕ = 0 clamped along the line x = 0. Let two
equal but opposite point forces be applied to the orthotropic half-plane symmetrically about the x axis. In this
case, we obtain the solution of the problem of bending of an orthotropic quadrant (x > 0, y > 0) clamped along
the side x = 0 and simply supported along the side y = 0. The complex potentials have the form

Φν(zν) = E5
ν(zν , τ) = E2

ν(zν , τ)− E2
ν(zν , τ̄),

Φν(zν) = Aν ln
zν − τν
zν − τ∗ν

+ Ā1lνsν ln
sνzν − τ̄1
sνzν − τ̄∗1

+ Ā2nνmν ln
mνzν − τ̄2
mνzν − τ̄∗2

,

τ∗ν = ξ − µνη, ν = 1, 2.

4. Let an anisotropic plane be loaded by a periodic system of point forces applied to a line parallel to the x
axis. In this case, one should replace ln (zν − τν) in (1) by ln{sin [ω(zν − τνk)]}. As a result, the complex potentials
become

Φν(zν) = E6
ν(zν , τ) = Aν ln {sin [ω(zν − τνk)]},

ω = π/l, τνk = τν + kl (k = 0,±1,±2, . . . ,±∞).
(5)

Here l is the period of the applied load.
We consider the orthotropic plane (ϕ = 0) loaded by two periodic systems of point forces (Fig. 1). Using

the superposition principle and bearing in mind Eq. (5), we obtain the following complex potentials in the problem
of bending of an infinite band (of width l) loaded by a point force at an arbitrary point:

Φν(zν) = E7
ν(zν , τ) = Aν ln {sin [ω(zν − τνk)]/ sin [ω(zν − tνk)]},

tνk = −ξ + µνη + 2l(k + 1), τνk = ξ + µνη + 2kl, (6)

ω = π/(2l), tνk − τνk = 2(l − ξ) (k = 0,±1,±2, . . . ,±∞).

It should be noted that the antiderivative of the function Φν(zν) as well as the functions ϕν(zν) = F ′ν(zν)
in formulas (5) and (6) are expressed in the form of infinite series [1, 5].

5. Let an orthotropic half-band D = {0 6 y <∞, 0 6 x 6 l}, ϕ = 0 with simply supported edges be loaded
by a point force at the point τ = ξ+ iη. The corresponding solution can be obtained by summation of the solutions
for the system shown in Fig. 2.
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The complex potentials become

Φν(zν) = E8
ν(zν , τ) = Aν ln

( sin [ω(zν − τνk)]
sin [ω(zν − tνk)]

sin [ω(zν − t∗νk)]
sin [ω(zν − τ∗νk)]

)
,

tνk = −ξ + µνη + 2l(k + 1), τνk = ξ + µνη + 2kl, t∗νk = −ξ − µνη + 2l(k + 1), τ∗νk = ξ − µνη + 2kl,

ω = π/(2l), tνk − τνk = t∗νk − τ∗νk = 2(l − ξ) (k = 0,±1,±2, . . . ,±∞).

Given the solution for a simply supported half-band, one can obtain the solution for an orthotropic (ϕ = 0)
rectangular plate with simply supported edges. To this end, it is necessary to apply a load to the band (Fig. 3). In
this case, the complex potentials are written as an infinite series

Φν(zν) = E9
ν(zν , τ) =

∞∑
n=0

Aν ln
( sin [ω(zν − τνkn)]

sin [ω(zν − tνkn)]
sin [ω(zν − t∗νkn)]
sin [ω(zν − τ∗νkn)]

)
,

tνkn = −ξ + µν(η + n2l1) + 2l(k + 1), τνkn = ξ + µν(η + n2l1) + 2kl,

t∗νkn = −ξ − µν(η + n2l1) + 2l(k + 1), τ∗νkn = ξ − µν(η + n2l1) + 2kl,

ω = π/(2l), tνkn − τνkn = t∗νkn − τ∗νkn = 2(l − ξ)

(k = 0,±1,±2, . . . ,±∞, n = 0, 1, 2, 3, . . . ,∞).

This series converges rapidly; hence, three or four first terms suffice to determine the static or kinematic quantities.
6. Let us consider an orthotropic half-band D = {0 6 y < ∞, 0 6 x 6 l}, ϕ = 0 whose semi-infinite edges

x = 0, l are simply supported and the side y = 0 of length l is clamped. The solution of the problem of this plate
loaded by a point force can be obtained by summation of the solution of the system shown in Fig. 4. For the upper
half-plane y > 0, the complex potentials (3) become

Φν(zν) = Aν ln (zν − τν) + Ā1lν ln (zν − τ̄1) + Ā2nν ln (zν − τ̄2).

The solution for the upper half-plane loaded by a periodic system of point forces can be written as

Φν(zν) = E10
ν (zν , τ) = Aν ln {sin [ω(zν − τνk)]}+ Ā1lν ln {sin [ω(zν − τ̄1k)]}+ Ā2nν ln {sin [ω(zν − τ̄2k)]},

ω = π/(2l), τνk = ξ + µνη + 2lk.

For the half-band (Fig. 4), the complex potentials become

Φν(zν) = E11
ν (zν , τ) = E10

ν (zν , τ)− E10
ν (zν , t)

= Aν ln
sin [ω(zν − τνk)]
sin [ω(zν − tνk)]

+ Ā1lν ln
sin [ω(zν − τ̄1k)]
sin [ω(zν − t̄1k)]

+ Ā2nν ln
sin [ω(zν − τ̄2k)]
sin [ω(zν − t̄2k)]

, (7)

ω = π/(2l), τνk = ξ + µνη + 2lk, tνk = −ξ + µνη + 2l(k + 1) (k = 0,±1,±2,±3, . . . ,±∞).
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Using the complex potentials obtained above, by analogy with the clamped half-plane, one can obtain the
fundamental solutions for an orthotropic quadrant with free and simply supported edges and the solution for a
half-band with a free finite edge and simply supported semi-infinite edges. The relations for a simply supported
orthotropic half-band can be obtained directly from (7) by replacing the elastic parameters with allowance for
orthotropy (for the corresponding values of lν and nν).

7. The fundamental solutions obtained above can be used to construct complex potentials (for the domains
mentioned above) in the case of a pair of point forces with a unit moment M = exp (iψ) applied at the point
τ = ξ + iη:

Φν(zν) = Mk
ν (zν , τ, ψ) =

d

ds
[Ekν (zν , τ + s exp (iψ))]s=0, ν = 1, 2.

In this case, the complex constants Aν are replaced by Bν :

Bν = AνH(ψ), H(ψ) = cosψ + µν sinψ.

8. We consider an infinite anisotropic plate with an elliptic hole Λ (Fig. 5). The coordinate origin is located
at the center of the ellipse, and the x and y axes coincide with the axes of the ellipse (a and b are the semiaxes of
the ellipse). Using the procedure proposed by Grilitskii [6] and taking into account the analogy between the plane
problem and the problem of plate bending, we obtain the solution of the problem of a plate with an elliptic hole
loaded by a point force:
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Φ(zν) = E12
ν (zν , τ) = ω′ν(ζν)−1[AνΨν(ζν) ln (ζν − ην)

+ lνĀ1Ψ1
ν(ζν) ln (ζ−1

ν − η̄1) + nνĀ2Ψ2
ν(ζν) ln (ζ−1

ν − η̄2) + Ψ3
ν(ζν , ην)]. (8)

In deriving this relation, we used the conformal mappings of the exterior of a unit circle γ = |σ| = 1 onto the
exterior of the elliptic holes Λν in the planes zν = x+ µνy and Λ (in the plane z = x+ iy):

zν = ων(ζν) =
a− iµνb

2
ζν +

a+ iµνb

2
1
ζν
, z = ω(ζ) =

a+ b

2
ζ +

a− b
2

1
ζ

(9)

and the inverse functions

ζν = ζν(zν) =
zν −

√
z2
ν − (a2 + µ2

νb
2)

a− iµνb
, ζ = ζ(z) =

z −
√
z2 − a2 + b2

a+ b
, ην = ζν(τν). (10)

The functions Ψν(ζν), Ψi
ν(ζν) (i = 1, 2), and Ψ3

ν(ζν , ην) are analytical outside the unit circle.
If a point bending moment is applied to the plate, the complex potentials become

Φν(zν) = M12
ν (zν , τ) =

1
ω′ν(ζν)

( Bν
ζν − ην

+
lνB̄1

ζν(ζν η̄1 − 1)
+

nνB̄2

ζν(ζν η̄2 − 1)

)
. (11)

The boundary conditions at the contour of the hole Λ are determined by the values of lν and nν . If the hole contour
is clamped or free, the quantities lν and nν should be found from (3) or (4), respectively. The complex constants Bν
are determined above (see Sec. 7).

It should be noted that the problem cannot be solved if mixed boundary conditions (w = 0 and Mn = 0)
are specified at the contour of the elliptic hole, because the boundary conditions cannot be written in terms of the
functions ϕν(zν). This is possible in the case of kinematic or static boundary conditions [2].

9. The solution of the problem of a plate with a rectilinear cut under point loads can be obtained from
(8)–(11) by setting b = 0. In particular, for a point moment we obtain

Φ(zν) = M13
ν (zν , τ) =

Bν
zν − τν

− Bν [I(zν)− I(τν)]
2
√
z2
ν − a2 (zν − τν)

+
B̄1lν [I(zν)− I(τ̄1)]

2(zν − τ̄1)
+
B̄2nν [I(zν)− I(τ̄2)]

2(zν − τ̄2)
,

I(z) =
√
z2 − a2 − z.

Changing the variables z′ = z+a and τ ′ = τ +a, from the last expression we obtain the solution of the problem of a
plate with a rectilinear cut along the real axis 0 < x < 2a loaded by a point moment. Passing to the limit as a→∞,
we find the solution of the problem of a plate with a semi-infinite cut along the real axis sector L = {0 6 x 6 ∞,
y = 0} subjected to a point moment:

Φ(zν) = M14
ν (zν , τ) =

Bν
zν − τν

− Bν
2

1
√
zν (
√
zν +

√
τν )

+
lν
2

B̄1√
zν (
√
zν +

√
τ̄1 )

+
nν
2

B̄2√
zν (
√
zν +

√
τ̄2 )

.

10. The fundamental solutions (Green functions) play an important role in solving problems of bending
of plates in the presence of point dislocations. Given these solutions, one can construct potential representations
in the form of integrals of displacement discontinuities distributed with unknown density, which ensure specified
displacement discontinuities along open or closed curves [7]. To determine the discontinuity density, one should use
conditions at the defect which yield one integral equation or a system of integral equations.

Let the plate contain dislocations that can be considered as discontinuities in displacements (deflections and
related tangential displacements). If the deflection w has a discontinuity, the stresses in the plate are determined
by formulas corresponding to the case of the point force Pz; however, the constants Aν should be determined
from the first system (2) in which the right-side vector-column fj (j = 1, 4) has the components f1 = w/(2πi) and
f2 = f3 = f4 = 0. If the increments in tangential displacements wx+iwy are specified, one should set d1 = wx/(2πi),
d2 = wy/(2πi), and d3 = d4 = 0 in the right-side vector-column dj in (2) to determine Bν . In this case, the stresses
and strains should be determined by formulas that describe the action of a point bending moment.
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TABLE 1

Material
No.

E1 · 10−4, MPa E2 · 10−4, MPa E1/E2 G · 10−4, MPa Mxmax/Pz

1 27.610 27.610 1 11.044 0.3183
2 5.384 1.795 3 0.863 0.4398
3 27.610 1.104 25 0.552 0.7669

11. Some capabilities of the potential representations proposed are illustrated in Fig. 6, which shows
the distribution of the stresses Mx over the cross section x = 0 of a half-plane (along the clamped edge) for
various orthotropic materials whose characteristics are listed in Table 1 (the numbers at the curves are the material
numbers). For all the materials considered, Poisson’s ratio is ν1 = 0.25. With an increase in the degree of orthotropy
E1/E2, the maximum stresses Mxmax at the clamped edge increase (see Table 1). At the same time, the stresses
decay more rapidly with distance from the projection of the point where the force Pz is applied onto the line x = 0.
In the case of an orthotropic half-plane, one can obtain the following expression for the stresses along the clamped
boundary:

Mx =
|µ1|2Pz

2πα

(
arctan

(y − η)(α2 + β2)− ξα
ξβ

− arctan
(y − η)(α2 + β2) + ξα

ξβ

)
.

For an isotropic material (Mxmax = Pz/π), this result can be obtained from either solution (3) or the latter formula
by using the limiting values of the anisotropy parameters (α→ 0 and β → 1).
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